Testing Delay-Insensitive Circuits

Alain J. Martin
and
Pieter J. Hazewindus

Computer Science Department
California Institute of Technology

Caltech-CS-TR-90-17

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Testing Delay-I nsensitive Circuits £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
DriveArlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 16
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Testing Delay-Insensitive Circuits

Alain J. Martin and Pieter J. Hazewindus
Computer Science Department

California Institute of Technology
Pasadena, California 91125

Abstract

We show that a single stuck-at fault in a non-redundant delay-insensitive
circuit results in a transition either not taking place or firing prematurely, or
both, during an execution of the circuit. A transition not taking place can
be tested easily, as this always prevents a transition on a primary output
from taking place. A premature firing can also be tested but the addition
of testing points may be required to enforce the premature firing and to
propagate the transition to a primary output. Hence all single stuck-at
faults are testable. All test sequences can be generated from the high-level
specification of the circuit. The circuits are hazard-free in normal operation
and during the tests.

1 Introduction

A circuit is said to be delay-insensitive when its correct operation does not
depend on propagation delays in wires and operators. Such a circuit is
asynchronous since no clock can be used for the sequencing of operations.
Traditional methods for testing synchronous circuits partition the circuit
into pieces of combinational logic that can be tested separately [1, 3]. Such
methods would be too expensive in terms of the size of the testing circuitry
because of the high ratio of state-holding elements to combinational elements
in delay-insensitive circuits.

A difficulty traditionally attached to testing delay-insensitive circuits is
the problem of testing for hazards and critical races [3]. However, delay-
insensitive circuits can be and should be designed without introducing races
and hazards. Not only does such an approach eliminate the problem of races
and hazards (which, incidentally, also plagues the testing of synchronous
circuits), but it also imposes a “conservative” design style in which each
transition on a variable has to be acknowledged by a transition on another
variable. As we shall see, this requirement makes it possible to test single
stuck-at faults simply.

In the following sections, we first define delay-insensitive circuits. Next,
we introduce the single stuck-at fault model. We define when a fault is
testable, and we derive a test for a circuit from the specification that the
circuit implements. We show that with such a test, all faults on outputs of
gates and most faults on inputs of gates are testable, as they cause the circuit

to halt. We demonstrate that the faults on inputs of gates that do not cause
the circuit to halt are also testable, as they cause certain transitions to fire
prematurely. Observing such premature firings may require the addition of
testing points.

Since the testing method requires no delay assumption, the results should
extend readily to other models of asynchronous circuits [2, 8, 9].

2 Delay-Insensitive Circuits

A delay-insensitive circuit is a collection of combinational and state-holding
gates and their interconnections (wires and forks). Delays are arbitrary, with
the exception of the delays associated with so-called isochronic forks. For
an isochronic fork, the differences in propagation delays in the branches of
the fork are assumed to be less than a gate delay. Because of this delay as-
sumption, these circuits are sometimes referred to as quasi-delay-insensitive
[7]-

A gate is described as a pair of production rules. A production rule
(PR) consists of a boolean expression (the guard) and an assignment of the
output of the gate to either true or false. (A change of value of a variable
as a result of an assignment is called a transition.) If the guard of a PR
evaluates to true and remains true, then the PR fires, i.e., the corresponding
output transition takes place. The assignment of true to z is written 21 and
is called an up-transition; the assignment of false to z is z| and is called a
down-transition.

In the rest of the paper, we will assume that a guard is in disjunctive-
normal form, that is, it is either a literal, a term, or a disjunction of terms.
A literal is a variable or its negation; a term is a conjunction of literals.

For instance, the PRs for the NAND gate with inputs z and y, and
output z are z Ay +— z] and -~z V -y — z7. If 27 fires in a state where -z
holds, the firing is said to be effective; otherwise it is vacuous. In the sequel,
we shall only consider effective firings of PRs.

We require that the guards of the PRs of a gate be mutually exclusive.
This is known as non-interference. Also, if the guard of a PR evaluates to
true, then the guard must remain true until the firing is completed. This is
known as stability. Non-interference and stability of PRs guarantee that the
circuit is free from races and hazards [6]. (Non-interference can be a property
of either the gate or the circuit; stability is a property of the circuit.)

We call the input and output variables of the circuit primary inputs and
primary outputs so as to distinguish them from inputs and outputs of gates.
A circuit is an implementation of a specification.

Definition 2.1 A specification is a set of partial orders of transitions on
the primary inputs and the primary outputs of the circuit.

We use a program notation called handshaking ezpansion to describe the
specification of a circuit, but any other notation can be used. In our nota-

tion, the transitions on input and output variables are explicit assignment
commands, but the circuit only “observes” the transitions on input vari-
ables by a wait action. A wait for a boolean expression B to become true
is denoted [B]. The control structures used in the paper are the semicolon
to sequence two actions, and the infinite repetition of an arbitrary program
part S, denoted *[S5].

Example 2.1 The following circuit, known as a D-element, is used in con-
trol circuitry to implement basic sequencing of communications [4]. It has a
left channel, with input li and oulput lo, and a right channel, with input i
and output ro. Its specification is:

*[[l1]; loT; [ld]; roT; [ri; rol; [-ri); lo]].

An internal variable, u, is needed in the implementation so that each
state of the system can be uniquely identified in terms of the values of the
variables. The specification extended with the internal variable gives:

*[[l2]; uT; [u]; LoT; [li]; roT; [rd]; w |5 [-u); ro s [-ri]; lo]).

(This extension of the specification is usually called a handshaking expan-
ston of the circuit. There are several ways to insert the internal variable
assignments in the specification.)

2.1 Environment

A circuit defined by its handshaking expansion, in general, does not con-
stitute a complete, functional system: The primary inputs need to be set
and reset by another component called the environment of the circuit. We
describe the environment as another handshaking expansion whose primary
inputs and primary outputs are the primary outputs and primary inputs of
the circuit, respectively.

For instance, a possible environment for the D-element is the handshak-
ing expansion:

*[1iT; [lo]; i |; [ro]; rit; [=rol; ri |5 [-lo]].

If the circuit is correct, there is at least one environment such that
the circuit and the environment together constitute a deadlock-free, non-
terminating (closed) concurrent system.

2.2 Acknowledgment Property and Isochronic Forks

In order to implement stability, the complete system consisting of a circuit
and its environment must fulfill the following Acknowledgment Property.

Property 2.1 (Acknowledgment) FEach transition on the output of a gate
causes a transition on the output of another gate. The second transition is
the acknowledgment of the first one.

Since the environment can observe only the primary outputs of the cir-
cuit, each transition on a primary input is followed by a transition on a
primary output after a finite sequence of transitions on internal variables.

In this paper, we postulate that any execution of the circuit is either
non-terminating or terminates with a transition on a primary output.

The Acknowledgment Property does not guarantee that each transition
on an input is acknowledged. (In [7], it has been shown that requiring
that all transitions—both input and output—be acknowledged restricts too
drastically the class of circuits one can build.)

Consider a gate g with output z; g is directly connected to n, n > 1,
gates g1,92,...,gn, by a fork with input z and n outputs 21,22, ..., zn. Let
ul,u2,...,un be the outputs of g1, ¢2,..., gn, respectively.

The fork is defined by the two PRs:

z — z11,...,2n7
-z — zl],...,zn]|.

According to the Acknowledgment Property, a transition on z need only
cause a transition on a single u, say ul. But by construction of the fork,
a transition on z causes a tramsition on each of the zi variables. Hence,
transitionson 22, ..., 2n are not acknowledged by a transition on the outputs
of the gates g2,...,gn, respectively. But we need to guarantee that the
transitions on 22,...,zn are completed before the following transition on z
takes place. We therefore introduce a delay assumption in the definition of
certain forks called isochronic forks.

Definition 2.2 (Isochronic fork) In an isochronic fork, the differences in
delays between the branches of the same fork are small enough compared to
the delays in other gates that when a transition on one of the branches of
the fork has been acknowledged, we may assume that the transitions on all
branches are completed.

(A delay assumption like that of isochronic fork is necessary and sufficient
to construct all circuits of interest [7].)

li 6} T4

Figure 1: Circuit for the D-element

2.3 Symmetrization and Redundant Terms

Let us return to the example of the D-element. A circuit that implements
the specification of the D-element has the PRs:

LiA-ri — ul
uVri — lol
SliAu — rof
riA=ll — ul
~uVI — rol
“rtA-u — lo|

The circuit is shown in Figure 1. For a proof that these PRs implement the
specification, see [6]. Usually, for the sake of simplicity, the same variable
is used in the production-rule description for the input and output of a
wire and for the input and outputs of a fork, as in the above description
of the D-element. This description is detailed enough to check that the
Acknowledgment Property is fulfilled: We check that each assignment on
the output variable of a PR is necessary for the guard of the following PR
to become true.

Of particular interest are the second and fifth PRs. As they both contain
a disjunction, the guard of each of them can become true as a result of either
of the two terms in the disjunction becoming true. However, in the actual
operation of the circuit, the guard of the second PR fires effectively only when
u is true, and the guard of the fifth PR fires effectively only when w is false.
The guard of the second PR could be replaced with just u and that of the
fifth PR with just —u. The disjunctive form of the guards has been used in
this implementation of the circuit so that the two gates can be implemented
as combinational gates. This transformation is called symmetrization.

Symmetrization is the following transformation. Consider the two PRs

Ay — 27
b A e 4 Zl

as part of a PR set implementing a specification. If we can prove that in
any state in which the second PR can fire—i.e. in any state where -z A z
holds—y also holds, then we can safely replace gnard -z with —zV-y. Indeed
-z V ny =~ in all states where the PR can fire. The term (here —y) thus
added is called a redundant term since it never causes the PR to fire, and
the transitions y | are said to be silent since they are never acknowledged.

2.4 Production-Rule Representation with Input Variables

In order to analyze which transitions on input of gates are acknowledged, we
have to refine the PR representation of the circuits. For instance, the circuit
for the D-element contains three forks: the fork with input /i and outputs /1
and [2, the fork with input 7¢ and the outputs 71 and 72, and the output u
of the C-element forking to the AND-gate with input u1 and to the or-gate

with input u2. We extend the PR representation so as to include transitions
on the branches of the forks:

i — 17,127
RA-rl - uf
u o~ ulf,u27
ulvr2 — lof
-l o~ 11],12)
-SllAu2 — rof
rt — 717,727
rIA=I2 — ul
~u - ull,u2]
~u2VIl — ro|
-t — rl],r2]
T2A-ul — lo|

We can now check that all transitions on inputs are acknowledged, except
transitions /1T and transitions 721, which are never acknowledged. Hence
the fork with input /¢ and the fork with input i have to be isochronic, and
the up-transitions on /1 and the up-transitions on r2 are silent.

Observe that an isochronic fork need not have silent transitions on one
of its branches. It is often the case, in particular with circuits that handle
data, that for a certain value of the data, one branch of an isochronic fork
has an acknowledged transition, and for another value of the data another
branch of the fork has an acknowledged transition. However, the fork still
requires the isochronicity assumption, to guarantee stability.

2.5 Non-redundancy

We assume that circuits are not redundant.

Definition 2.3 Let circuit C be an implementation of specification §. A
gate in C is redundant if the circuit still implements S after replacing an

input of the gate with either true or false. Circuit C is redundant if there
is a redundant gate in C.

The circuit for the D-element derived above is not redundant although it
contains PRs with redundant terms. Hence, a circuit containing PRs with
redundant terms need not be redundant.

3 Testing for Stuck-at Faults
3.1 The Stuck-at Fault Model

The fault model we use is the single stuck-at fault model. A faulty circuit is
modeled as having a single static fault. A variable can be either stuck-at-0
(permanently at a low voltage) or stuck-at-1 (permanently at a high voltage).
For a fork, each branch can be stuck-at-1 or stuck-at-0 independently of the
other branches and the input of the fork. Hence, a fork branching to n gates
(n > 1) contributes 2(n + 1) different single stuck-at faults [1, 3].

The following example shows that a fault on the input of a fork and the
same fault on one of the outputs of the same fork do not lead to the same
circuit.

Example 3.1 Consider the circuit for the D-element. If the output u of the
C-element is stuck-at-0, then we replace each occurrence of u by false in the
PR set and reduce boolean expressions:

rt — lo]
-rt — lo|

In addition, ro and u are both permanently false.

If input u of the gate with output ro is stuck-at-0, then replace u with
false in the PRs for ro:

lin=-ri - ul
uVri — lol
re ANl = ul
“rtA-u = o]

Output ro is permanently false. Hence, the two faults do not result in iden-
tical circuits.

3.2 Inhibited Transitions and Premature Transitions

The effect of a stuck-at fault on the output of a gate is straightforward.
Let z be the output of a gate. If z is stuck-at-1, no transition z | can take
place. We say that z stuck-at-1 inhibits all transitions z |, and similarly, 2
stuck-at-0 inhibits all transitions 2 1.

But the effects that a stuck-at fault on the input of a gate has on the
output of the same gate are more complex. Such a fault may inhibit tran-
sitions on the output, and/or cause transitions on the output to become
enabled in an illegal state. In the latter case, we say that the transitions are
prematurely enabled. If a transition indeed fires in an illegal state, we say
that it fires prematurely.

Theorem 3.1 Let 2 be an input variable of a gate, g. Then, at least one of
the following two cases holds (B is an arbitrary boolean expression).

1) x A B is a non-redundant term in the guard of a PR of g. In this case,
x stuck-at-1 causes some transitions on the output of g to be prematurely
enabled, and z stuck-at-0 causes some transitions on the output of g to be
inhibited.

2) ~zAB is a non-redundant term in the guard of a PR of g. In this case,
z stuck-at-0 causes some transitions on the output of g to be prematurely
enabled, and x stuck-at-1 causes some transitions on the output of g to be
inhibited.

Example 3.2 Consider the C-element defined by the PRs:

Ay — 2]
Sz ANy oz

T stuck-at-0 causes all zT transitions to be inhibited, and all z | transitions to
be prematurely enabled. = stuck-at-1 causes all z| transitions to be inhibited,
and all z1 transitions to be prematurely enabled.

Consider the AND gate defined by the PRs:

ANy — 2z
Sz VoY — oz

z stuck-at-0 causes all z T transitions to be inhibited, and some of the z |
transitions to be prematurely enabled if the term —z is not redundant.

T stuck-at-1 causes all 21 transitions to be prematurely enabled, and some
z | transitions to be inhibited if the term -z is not redundant.

Observe that, if the term -z is redundant, then z stuck-at-1 will not
cause any transition to be inhibited. Hence the circuit may not halt as the
result of such a fault.

Proof: Consider a gate g with input z and output 2. The most general
form for the PRs of g is:

(zANBO)V (-2 AB1)VB2 +~ 21
(zACO)V(m2ACL)VC2 +— =z|

where the B and C expressions do not contain z.

Some of the terms may be redundant, if they have been added for sym-
metrization. But, since the circuit is not redundant, at least one term con-
taining is not redundant, for instance x A B0, and 2 A B0 #Z B0 in the states
where -z holds. Hence, there is at least one state, say S, in the computation
where —z is true, and z A B0 is true.

We first show that A B0 is the only true term in §. The terms of the
other PR are not true because of the non-interference requirement; -z A B1
is obviously not true since z is true; and B2 is not true either: B2 also
holding would violate either the non-redundancy of the term z A B0 or the
stability of the PR.

Because of stability, the PR fires in S in the correct circuit. Hence, if z is
stuck-at-0, the guard reduces to false, and the firing of PR cannot take place,
i.e., those transitions 2T that fire in § in the correct circuit are inhibited in
the faulty circuit.

If z is stuck-at-1, 2 A BO reduces to BO. Then, necessarily, the number of
states in which the PR can fire has been increased. Otherwise, we would have
B0 = 2 A B0 in all states where -z holds, which we have excluded. Hence,
there is a state in which the transition of the PR is enabled prematurely. O

Hence, any fault in a non-redundant circuit results in an incorrect cir-
cuit, since a transition is either inhibited or prematurely enabled. The test-
ing problem is to find an environment in which the faulty circuit behaves
differently from the correct one, i.e., causes a sequence of transitions on the
primary inputs and outputs that violates the specification.

3.3 Tests and Testability

Definition 3.1 A test of a circuit C is a finite execution of an environment

of C.

In order to detect a stuck-at fault on each variable of C, the execution
of C' with the test must cause an up- and a down-transition on each variable

in C.

Definition 3.2 Let circuit C implement specification S, and let C' be iden-
tical to C, except that C' has a single stuck-at fault. This fault is detected by
a test T if the ezecution of C' together with T causes a sequence of primary
output transitions that is not consistent with S, i.e., either a primary output
transition fires prematurely or it is inhibited.

When a transition on a primary output never takes place where such a
transition is expected in the specification, the circuit, or a part of it, has
halted indefinitely.

For example, a test for the D-element is li {;[lo]; I |; [ro]; ri 1; [~ro]; ré |
; [7lo]. Repeating this sequence any number of times is also a test. Observe
that the test is indeed a prefix of the environment for the D-element described
earlier.

In the D-element, if a transition ro | takes place after input transition
171, then a fault has been detected. If, after transition /i1, we can decide
that transition /o] will not occur, then we have also detected a fault.

Definition 3.3 Consider a circuit that has one stuck-at fault. This fault is
testable if a test can be constructed such that any execution of the circuit
with the test detects the fault.

Since propagation delays are, in theory, finite but unbounded, a prema-
ture transition may take an arbitrary time to fire, and it cannot be deter-
mined in any finite amount of time that a circuit has halted.

In practice, however, there is an upper bound on propagation delays for
any chip technology. We can therefore safely assume that a transition will
not occur if it has not occurred within a certain period of time. Similarly,
we can assume that if an output change will take place eventually, it will
take place within a certain period of time.

3.4 Non-interference and Stability in the Presence of Faults

A correct circuit has non-interfering and stable PRs. In the presence of a
stuck-at fault, however, this may no longer be the case. For interfering PRs
there is a simple transformation of the PRs that results in non-interference.
Let z be a variable in a circuit, with PRs:

BO = ZT
By — z],

where By and B; are arbitrary boolean expressions. If =By V =B is a
tautology, then these two PRs are non-interfering, even in the presence of a
stuck-at fault. This holds for any combinational gate, the C-element, and
most generalizations of the C-element.

If an input of a flip-flop has a stuck-at fault, however, the resulting PRs
may be interfering. Consider the flip-flop with PRs:

z — zT

Yy = z|.
If input 2 is stuck-at-1, the first rule becomes true — z1. If, during a test,
y holds, then both z{ and z] can fire simultaneously.

If =By V - B; is not a tautology, we redesign the circuit by strengthening
the PRs, so that the resulting production rules are non-interfering, even in
the presence of a fault. For the flip-flop above we can change either the first
PR to z A =y — 2T, or the second one to y A =z — 2|, or both.

A fault that causes a PR to fire prematurely may violate the stability of
a PR, possibly causing some hazards. It is therefore necessary that the first
premature firing caused by a fault be detected. In the presence of a fault that

causes both a premature firing and an inhibited firing, one should not rely
on the detection of the inhibited firing if the premature firing happens first,
even though, as we shall next see, detecting an inhibited firing is simpler.

We now turn to the problem of detecting both types of malfunctioning—
inhibited firing and premature firing. We first show how an inhibited firing
leads to the circuit halting during any test. We assume that no premature
firing takes place during the test.

4 Faults Leading to a Circuit Halting

In this section we show that a circuit halts as the result of a single stuck-at
fault causing an inhibited transition. Hence, any such fault is testable.

We assume that a non-redundant circuit contains an up-transition and a
down-transition on each variable of the circuit. One transition can be part
of the reset procedure. We first prove the following lemma.

Lemma 4.1 FEach transition on an internal variable is followed by a finite
sequence of transitions ending with a transition on a primary output.

Proof: Let z1 either be the output of a gate of the circuit, or be a
primary input, i.e., the output of a gate of the environment. According to
the Acknowledgment Property, each transition on z1 is acknowledged by a
transition on the output 22 of another gate, say g; 21 is connected by a wire
or a fork to an input of g.

A transition on 22 is also acknowledged by a transition on the output of
another gate. Hence, since the closed circuit is finite, each transition on the
output of a gate is included in a cycle of transitions on gate outputs, each
acknowledging the previous one in the cycle.

But the circuit is non-redundant and an execution of the circuit is either
a non-terminating computation consisting of alternations of transitions on
primary inputs and primary outputs or terminates with a primary output
transition. Hence, any cycle of transitions contains at least one transition
on a primary output of the circuit. a

Theorem 4.2 If a non-redundant circuit contains inhibited transitions on
the output of a gate or on a primary input, then some transition on a primary
output which takes place in the execution of the correct circuit does not take
place in the execution of the faulty circuit with any test that exercises the
inhibited transitions.

Proof: Let s be the variable, either gate output or primary input, and
let ts be the transition on s inhibited by the fault.

If s is also a primary output, then a transition on a primary output does
not take place, namely, ts. If s is not a primary output, then, by the lemma
above, there is a finite chain of transitions following ts and ending with a
transition on a primary output.

There is a gate output z such that ¢s is acknowledged with a transition
tz on z, and tz follows ¢s in the chain. Since ¢z acknowledges ¢s, and since
the circuit is not redundant, if s does not occur during the test, ¢z does not
occur. The situation is equivalent to having a stuck-at fault on gate output
z. By induction on the length of the chain, all transitions in the chain are
inhibited, in particular the transition on the primary output. a

5 Testing Premature Firings

Two conditions must hold to make a fault leading to the premature firing of
a PR testable. First, the circuit has to be held in a state where the PR will
fire prematurely. Second, this firing has to cause a sequence of transitions
that will lead to a transition on a primary output, so that the fault can be
detected.

The only way to hold the circuit in a state where the premature firing
will eventually take place is by postponing a transition on a primary input,
since primary input transitions are the only transitions that the test can
control.

Hence the set of states in which the transition can misfire has to contain
a transition on a primary input. Otherwise, one of the variables that change
in one of these states has to be made into a primary input.

Example 5.1 A test for the D-element is
li1; [lo]; li]; [ro]; it; [-rol; ri |; [—lo].

We have seen that, with a fault ri stuck-at-0, PR —~ri A ~u — lo | will
misfire if there is a state in the handshaking expansion where ri A ~u A lo
holds. Such a state is the state in the handshaking ezpansion where the
circuit waits for ~ri to hold. Aslo is a primary output, this fault is testable
if the test withholds transition ri|.

Stmilarly, fault li stuck-at-0 can cause PR —li Au — ro1 to misfire if
there is a state where li A u A —ro holds, which is the state when the circuit
waits for —li to hold. As ro is a primary output, this fault is testable if the
test withholds transition li |.

6 Testing with Control Points

For some circuits, it is not possible to withhold a transition so that a PR will
fire prematurely. Consider the case of two D-elements, where the R channel
of the first element is connected to the L channel of the second (see figure 2).
The handshaking expansion, including transitions of internal variables, is:

#[[114]; wl1; [wl]; 110T; [-I1d]; rloT; [124]; w213 [u2); [201; [r1d]; wl]; [-ul];
rlo|; [-124]; 2071; [r21]; u2 |; [-u2]; r20; [~r24]; 120]; [-r1d];110]],

g rlo [g r2o0
72 >—’
ul 2 u2
117 C C 21
ul . u2
{1lo | Tl
120

Figure 2: Circuit for two connected D-elements

The primary inputs of this circuit are /1¢ and r2{, the primary outputs are
1o and r20. With this handshaking expansion, we construct test

11375 [110]; 114 |; [r20]; r2¢1; [~720]; 721 | ; [-10].

As seen previously, fault 12¢ stuck-at-0 can cause 7207 to fire prematurely in
the states going from transition 421 until transition rlo| in the handshaking
expansion. But this part of the handshaking expansion contains no primary
input change; therefore the environment cannot keep the circuit in this state
for an indefinite time so as to guarantee misfiring of the PR. The fault can
be made testable if 71 is transformed into a primary input.

A more realistic example can be found in the FETCH process of the Cal-
tech Asynchronous Microprocessor [5]. Part of the handshaking expansion
is:

o3 [ai A =eil;colsuls [Du A il bots col s aol; [bi]; bol; . . .,

where u is a state variable that forks to several gates, and ao and ai are
channel variables, as are bo and bi, and co and ci. For variable bo, the PRs
are:
~uAciAco — bol
{ —agoANbi — bo).

Consider input u stuck-at-0 for this gate. The fault is testable if the envi-
ronment can hold the circuit in a state where u A ¢i A co A ~bo holds, for
an arbitrary amount of time, to guarantee that boT misfires. The only two
transitions of co are shown above. Since a transition u | directly follows co{,
the environment cannot hold the circuit in a state where bo{ can misfire for
an arbitrary length of time. Therefore the fault is untestable.

To make fault u stuck-at-0 testable, we replace state variable u with a
channel U. Each u1 transition is replaced by [ui];uo 1, each u | transition
is replaced by [-ui];uo |, and each occurrence of u in the guard of PRs is
replaced with ui. Now the environment can hold the circuit in a state where
bo1 misfires, making the fault testable. Channel U is used only during the
testing of the circuit. During normal operation ui is connected directly to
0.

7 Concluding Remarks

The concluding remarks of this preliminary investigation of delay-insensitive
circuit testing can be put in the “bad-news/good-news” form. The bad
news is that, contrary to common belief, a single stuck-at fault does not
always lead to the circuit halting, but may also lead to some transitions
firing prematurely. The good news is that, also contrary to common belief,
any single stuck-at fault can be tested. Testing premature firings may require
adding control points to the original circuit. We are redesigning the control
part of the Caltech Asynchronous Microprocessor so as to make the circuit
fully testable. A first redesign indicates that the number of extra testing
points is very small. Three of the five processes that constitute the control
of the microprocessor each require one testing point. An extra testing point
is required when the processes are connected together. We have not discussed
how the test sequences should be generated. They all can be generated from
the high-level specification of the circuit, but that may be too expensive—in
terms of the size of the vectors—for certain circuits, e.g., datapaths. We
have also ignored some complications created by the reset procedures.

Acknowledgments

We wish to thank Steve Burns for many valuable contributions, and Drazen
Borkovic, Marcel van der Goot, Tony Lee, and Jose Tierno for their com-
ments on earlier versions of the manuscript. The research described in this
paper was sponsored by the Defense Advanced Research Projects Agency,
DARPA Order number 6202; and monitored by the Office of Naval Research
under contract number N00014-87-K-0745.

References

[1] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems Test-
ing and Testable Design, Computer Science Press (1990)

[2] T.A. Chu, Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic
Specifications, Ph.D. Thesis, MIT (1987)

[3] H. Fujiwara, Logic Testing and Design for Testability, MIT Press (1985)

(4] A.J. Martin, “Self-timed FIFO: An Exercise in Compiling Programs
into VLSI Circuits,” Conference Proceedings, From HDL Descriptions
to Guaranteed Correct Circuit Designs, ed. D. Borrione (1986)

[5] A.J. Martin et al., “The Design of an Asynchronous Microprocessor,”
Proceedings, Decennial Caltech Conference on VLSI, ed. C.L. Seitz,
MIT Press, pp. 351-371 (1989)

[6]

[7]

[10]

A.J. Martin, “Programming in VLSI: From Communicating Processes
to Delay-Insensitive Circuits,” in UT Year of Programming Institute on
Concurrent Programming, ed. C.A.R. Hoare, Addison-Wesley (1989)

A.J. Martin, “The Limitations to Delay-insensitivity in Asynchronous

Circuits,” Proceedings, Sizth MIT Conference on Advanced Research in
VLSI, MIT Press (1990)

T.H.-Y. Meng, R.W. Brodersen, and D.G. Messerschmitt, “Automatic
Synthesis of Asynchronous Circuits from High-Level Specifications,”
IEEFE Transactions on Computer-Aided Design of Integrated Circuits,
vol. 8 (11), pp. 1185-1205 (1989)

J. Staunstrup and M.R. Greenstreet, “Synchronized Transitions,” in
Formal Methods for VLSI Design, ed. J. Staunstrup, Elsevier Science
Publishers B.V. (1990)

M.J.Y. Williams and J.B. Angell, “Enhancing Testability of Large Scale
Integrated Circuits Via Test Points and Additional Logic,” IEEE Trans-
actions on Computers, vol. C-22, pp. 4660 (January 1973)

